Second Messenger-Mediated Adjustment of Bacterial Swimming Velocity
نویسندگان
چکیده
Bacteria swim by means of rotating flagella that are powered by ion influx through membrane-spanning motor complexes. Escherichia coli and related species harness a chemosensory and signal transduction machinery that governs the direction of flagellar rotation and allows them to navigate in chemical gradients. Here, we show that Escherichia coli can also fine-tune its swimming speed with the help of a molecular brake (YcgR) that, upon binding of the nucleotide second messenger cyclic di-GMP, interacts with the motor protein MotA to curb flagellar motor output. Swimming velocity is controlled by the synergistic action of at least five signaling proteins that adjust the cellular concentration of cyclic di-GMP. Activation of this network and the resulting deceleration coincide with nutrient depletion and might represent an adaptation to starvation. These experiments demonstrate that bacteria can modulate flagellar motor output and thus swimming velocity in response to environmental cues.
منابع مشابه
cAMP-stimulated phosphorylation of an axonemal polypeptide that copurifies with the 22S dynein arm regulates microtubule translocation velocity and swimming speed in Paramecium.
In Paramecium tetraurelia, cyclic nucleotides are important physiological second messengers that could regulate dynein mechanochemistry by phosphorylation. A 29-kDa polypeptide that is phosphorylated in a cAMP- and Ca(2+)-sensitive manner in permeabilized cells and isolated axonemes is the only significant phosphorylated moiety that consistently copurifies with 22S dynein from paramecium cilia....
متن کاملMathematical models for motile bacterial transport in cylindrical tubes.
Mathematical models considering motile bacterial transport within a geometrically restrictive cylindrical tube were developed. Two macroscopic transport parameters, the random motility coefficient as a self-diffusion coefficient of the cell population and the chemotactic velocity as a chemical-induced velocity, were derived. The three-dimensional cell balance equation was reduced to forms simil...
متن کاملIntegration of the Second Messenger c-di-GMP into the Chemotactic Signaling Pathway
UNLABELLED Elevated intracellular levels of the bacterial second messenger c-di-GMP are known to suppress motility and promote sessility. Bacterial chemotaxis guides motile cells in gradients of attractants and repellents over broad concentration ranges, thus allowing bacteria to quickly adapt to changes in their surroundings. Here, we describe a chemotaxis receptor that enhances, as opposed to...
متن کاملSurvey of bacterial contamination of environment of swimming pools in Yazd city, in 2013
Background: Infections are readily transmitted as a result of bacterial contamination of swimming pools. Therefore, hygiene and preventing the contamination of swimming pools is of particular importance. The objective of this study was to determine the amount of bacterial contamination in indoor pools of Yazd in 2013. Methods: In this descriptive and analytical study, all indoor swimming pools ...
متن کاملEffect of lateral cerebroventricular injection of Orexin A on swimming
Introduction: Orexin A is a hypothalamic neuropeptide, widely distributed in many parts of the central nervous system and perhaps due to this reason, this neuropeptide is involved in many physiological functions. The purpose of this study was to determine the effect of lateral cereberoventricular injection of orexin A on distance, velocity and swimming time in rats. The results were analyzed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 141 شماره
صفحات -
تاریخ انتشار 2010